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Wave diffraction in a two-fluid system 
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Wave diffraction due to a step change in bottom topography is considered for the 
case of two superimposed fluids of different, but constant, densities. The interface 
lies below the upper surface of the step. Shallow water theory is shown to be 
applicable only if the ratio of a non-dimensional frequency parameter to the 
departure of the density ratio from unity is sufficiently small. An approximate 
solution of the full equations, obtained by a method applied by Miles (1967) to 
surface wave diffraction, yields results limited only by the condition that the 
frequency parameter be small. 

1. Introduction 
It has recently been suggested (Radok, Munk & Isaacs 1967) that the observed 

peaking of the incoherent energy of the mid-ocean surface displacement at  tidal 
frequencies might be due in part to the transmission of deep-sea internal waves 
into shallower water as surface waves. An analysis, based upon the shallow water 
approximation and the two-fluid model shown in figure 1, indicated that such 
transmission can occur. Rattray (1960) has also applied this type of analysis to 
the problem of coastal generation of internal tides. 

FIGURE 1. Schematic of the two-fluid model. 

The amplitudes of the incident surface and internal waves arriving from deep 
water may be taken as known quantities; the problem is then to solve for the 
amplitudes of the transmitted surface wave and reflected surface and internal 
waves. Three conditions must be applied at the step in order to obtain a unique 
solution. Continuity of surface elevation and continuity of mass flow within each 
layer would appear to be a reasonable extension of those conditions applied by 
Lamb (1932, 0 176) to the homogeneous case (Lamb’s results have been shown 
by Bartholomeusz (1958) to be the correct asymptotic limits of the exact solu- 
tions). On this basis, the analysis yields Lamb’s results for the transmitted and 
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reflected surface wave amplitudes, due to an incident surface wave, as the density 
ratio (P,/&,) is allowed to approach unity. However, the amplitude of the re- 
flected internal wave due to an incident surface wave tends to infinity in this 
limit and the same result would hold for the transmitted internal wave if the 
interface were to lie above the step. 

These fallacious results (which are presented explicitly in 0 4) are a consequence 
of the conditions applied at  the step because only continuity of total mass flow 
should be applied as (Pa/&) approaches unity. The above conditions place a 
constraint on the problem such that the internal wave amplitude becomes 
infinitely large in order to avoid total reflexion of the surface wave. The basic 
difficulty, however, lies in the breakdown of the shallow water approximation 
as (palpa) approaches unity for a fixed, though small, value of the non-dimensional 
frequency parameter. 

In  the present investigation, an approximate solution to the full equations of 
motion is obtained which is valid for values of (pulpb) arbitrarily close to unity. 
The method is identical to that applied by Miles (1967, hereafter denoted by M) 
to the homogeneous case. 

2. Discussion of the eigenvalues 
We &-st discuss the characteristics of the eigenvalues in order to define pre- 

cisely the limitations of shallow water theory as well as to obtain necessary 
information concerning the standing edge waves which are excited in the vicinity 
of the step. 

If we define a velocity potential 6 as 
v = Re {e+Vr$(z, y)}, (2.1) 

where vzr$ = 0 (2.2) 

6 = $(Y)  exp W X ) ,  (2.3) 

within each layer, and if we consider progressive waves of the type 

where K is real, then the exact eigenvalue relation for the region x < 0, as given 
by Lamb (1932, 0 231), is 

@[l - y + coth EH, coth x&] - Eo K[coth fi;& + coth fi;&] + ~ f i ; ~  = 0, (2.4) 

where Ro = K,h = a2h/g, if = Kh, (2.5) 

H, = h,/h, = hb/h (2.6) 

and = - (Palpa). (2.7) 

The model is meaningful mainly for xo < 1 and our later results will be restric- 
ted to this case. The eigenvalues then depend on the parameter 

A-1 = ifo/y*, (2.8) 

where y* = yHa& We shall consider the depth ratios to be held fixed while Zo 
and y vary. The subscripts (1 ,2)  denote, respectively, the surface and internal 
wave modes. For h of order unity and y* < 1, we find that 

El = Ei{ 1 + R,( & + &A) + O(i?it)}. (2.9) 
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We can now recover the shallow water surface wave results, namely, 

El = BS{1+ gy* + O(y*),}, (2.10) 

by allowing KO to approach zero for fixed y*, so hEo B R,. On the other hand, 
if we allow y* to approach zero for fixed Eo7 (2.9) gives the first-order correction, 
for dispersion, to the shallow water result. 

For the internal wave, it is appropriate to expand E,  as 

K 2  = (K,/y*).t [&,, +B,IZ,, + O(Rg)]. (2.11) 

We then find that &,, is given by the solution of 
g2, = H,Hbh-8{cothh-tH,&,,+ cothh-~H,IZ,,J. (2.12) 

The shallow water result is recovered by allowing h to tend to infinity, where- 

R, = (i;,/y*)$ (1 + O(y*)}. (2.13) 

For shallow water theory to be applicable, E,  must be small and so we require 
(E,/y*)a to be much less than unity. Care should clearly be exercised because a 
typical value of y for the ocean is 

On the other hand, as h tends to zero, we find that I?,, tends to 2HaHbh-* 

i;, = (2E0/y) (1 + O(E& (2.14) 
so that 

The results obtained in this limit might be criticized because the two-fluid model 
becomes unrealistic for such waves of increasingly short wavelength. Still, the 
limit does permit us to obtain the correct continuation of the shallow water 
results and to clarify the difficulties associated with those results. For moderate 
values of A, Ha and H, must first be specified in order to determine I?,, from (2.12). 

A similar approach can be used to discuss the characteristics of the standing 
waves which are excited in the vicinity of the step. If  in (2.4) we set = - ik, 
where 2 = kh, we obtain 

upon &,, tends to unity so that 

afj[l -y-cot~H,cOt~Hb]-~,~[cot~Ha+cot&Hb]-y~2 = 0. (2.15) 

We shall consider the special case when h, = rnh,, m being an integer 2 1, in 
which case (2.15) can be rewritten as 

Kg cos iL. + ROE sin E + y(Eg + 2 2 )  sin ( ~ ' )sin(*) = 0. (2.16) 

For y = 0, the roots are those of 
E,  = -EtanE (2.17) 

and are infinite in number. Furthermore, it is clear that E approaches a multiple 
of 77 as i?, approaches zero. If n is an integer, we find that 

iL. = n77[l- (n;.)-2Ko+O(Eg)]. (2.18) 

Now we consider (2.16) and allow KO to approach zero for y small but fixed. 
From the last term, we conclude that 5 approaches (1 + m) (n/m) 7~ and that the 
case when (n/m) is integral must be considered separately. If we let 

il. = ( 1 + r n ) ( n / r n ) ~ ~ 1 + K 0 ( m / n ; . ) 2 ( 1 + m ) - ~ f + ~ ( E ~ ) 1 ,  (2.19) 

l + m  l + m  

we find that f = -7-1 (2.20) 
5-2 
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if (n/m) is non-integral. When (n/m) is an integer, however, there are two values 
for f ,  namely, f = -{l+ym/(l+m)2+O(y2)} (2.21) 

and (2.22) 

These results will be used later when expansion of the transmission coefficients 
is made. 

For the case when y approaches zero more rapidly than Eo, say, as an example, 
y = p7;, (2.23) 

if we let iL. = n7f[l +Eo(n7r)-2~+O(K;)],  (2.24) 

we find that E = - 1 + (cos nr)-1 sin (E) sin (=)I, l + m  l + m  
(2.25) 

so that (2.18) is obtained for the special case 9 = 0. 

3. Analysis for waves of arbitrary wavelength 

For x < 0 ,  the velocity potentials are written as 
Referring to figure 1, we fix the origin of the y co-ordinate at the interface. 

where either a or b is to be taken as a subscript. 
The boundary conditions are 

(a$Jay) - Ko$u = 0 at Y = ha,  

and are satisfied if the Kj  and kq satisfy (2.4) and (2.15), respectively. 

appendix. As defined there, they are orthogonal in the sense that 
Due to the complicated nature of the various functions, they are listed in the 

where $or Y" denotes the eigenfunction associatedwith any particular progressive 
or standing wave. 

For x > 0 only a surface wave is possible, and so 
(3-7) 

where Q3(y) and q5*&) are given in the appendix by (A 3) and (A 6), respectively, 
and K, and the 1, satisfy 

(3.8) 
The functions Q3(y) and q5pd(y) are orthogonal in the usual sense. 

$ - {A,eiKsx +A e - i E a ~  a -  3 I Q3(Y 1 + c 0, e-'P #,a (Y) 9 

P 

KO = K3tanhK3ha = -l,tanlqhd. 
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An approximate solution is now obtained by the variational method used by 
Miles. In  order to avoid repetition, only a description of the steps is offered here; 
the reader is referred to Miles’ paper for further details. The Fourier coefficients 
are first expressed in terms of the unknown horizontal component of velocity 
at  the step, U(y), say, by making use of the orthogonality of the functions. 
A second imposed condition is that q5 must be continuous at  x = 0. By defining 
the vectors 

(3.9) 

(3.10) 

A, = (4, A,, - 2 3 1 ,  

A,, = {A A^2, -A31 

and *(Y) = {@1a(Yh @2a(YL @3(Y)17 (3.11) 

these two conditions can be used to define a scattering matrix S by the relation 

K(A1- AII) = - iS(AI+ AII), (3.12) 

where K is the diagonal matrix 
K = C~, , , ,~mI .  (3.13) 

We can also define from (3.12) a reflexion-transmission matrix T such that 

where 
(3.14) 

(3.15) 

The unknown U ( y )  is expressed as 

U(Y) = (A1 + A d  U(Y)t (3.16) 

as in M (3.8). The elements of S can be defined in terms of variational integrals, 
analogous to M (5.2) and defined by (A 13) and (A 14). This fact allows us to 
approximate the unknown u,(y). For the surface wave problem, remarkably 
accurate results were obtained by substituting 

urn(?/) = P?n@,(Y) (3.17) 

and the same approximation will be used here. We then have, from (A 13,14) 
and by use of the orthogonality of CD&) and $,,(y), 

where 

(3.18) 

(3.19) 

(3.20) 

The full expressions for N,,, m = 1 and 2, and x are given by (A 11) and (A 12); 
N3 equals p a l .  

With these results, the transmission and reflexion coefficients can be computed. 
For instance, the elevation of the free surface for x < 0 due to the incident waves is 

c. lnc = iK,,v-1 C aj lAjJ  exp(iKjz+i$j), (3.21) 
j = 1 , 2  
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where $$ is the phase of A j  and 

as = -KjA;l(KjsinhKjh,-KocoshKjh,)-l, (3.22) 

Rj being given by (A 7).  The elevation of the interface due to the incident waves is 

(3.23) 

and the elevation of the free surface due to a wave being transmitted into 

(3.24) 
region d is Ctr = iK,r1a3A3exp (iK3x), 
where a3 = cash K3hd, (3.25) 

A, being given by (A9). Using (3.14) with Ah3 = 0, we can measure the trans- 
mission of a surface wave incident from the deeper fluid by the impedance factor 

(3.26) 
Z,, so that 

Ctr = Zl(iKo+al) lAll exp (iK3x+ i$,) 
and '1 = - T31(a3/a1). (3.27) 

The transmission of an incident internal wave is measured by the factor K2, where 

Ctr = Y 2 ( i K 2 / ~ A , )  exp ( X 3 x  + i$,) (3.28) 

and y2 = - T32(a3 KO (3.29) 

Thus, is related to the elevation of the interface due to the incident internal 
wave and so Y, would seem to have the greatest interest in view of the comments 
made by Radok et al. (1967). However, in view of the discussion given in 9 1, it is 
desirable to find the relation between the elevation of the free surface due to an 
incident surface wave and the elevation of the interface due to reflexion of that 
wave as an internal wave. This is measured by the factor 9, where 

qrefl = P,(iK0r1a,) lAll exp (-iK2x+i$,) (3.30) 

and 91 = ( K , / ~ , K o ~ , )  TZl. (3.31) 

Due to the complexity of the various quantities, we now concentrate on 
finding the results as KO approaches zero. For the homogeneous case, it  is known 
that the contribution of the standing waves is of order &. We shall first set x to 
be zero (plane wave approximation), discuss the results on the basis of $ 2  and 
then finally consider the validity of this approximation by evaluating x as go 
approaches zero. 

4. The plane wave approximation 
Upon evaluation of the elements of T, we find that 

T31 = -2PuNl/P, T32 =(flz/fli)T31, T,, = -2p:Ni&K3/K,P, (4.1) 

(4-2) where 

If  we now set x = 0 and evaluate the above expressions for the shallow water 
limit (zo+ 0 for y small but fixed), we find that 

P = 1 + p:{(fl:K3,/Ki) + (NzK3/K2) + i~K3).  

- 2, = 2[1 + H i {  1 + H,(yH,/H,)3} + O(y)]-l, (4.3) 
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where Ha = h,/h, 
- 

and - PI = 2(HbH,/yH,)3 (1 + Hj)-l. (4.5) 

Thus, (4.3) yields Lamb’s (1932, § 176) result as y -+ 0, (4.4) indicates the trans- 
mission of a surface wave with amplitude y times the amplitude of an incident 
internal wave and (4.5) yields, as y -+ 0, the singular result discussed in the first 
section of this paper. 

On the other hand, if y tends to zero for KO small but fixed, we find, after use 
of (2.14), that N, vanishes exponentially fast so that ( -2,) approaches the 
homogeneous fluid result and Y2 and P, tend to 

Y2 = - &(y2/go Ha) (1  + H$)-l exp ( - 2RoAH/y) 

9, = - 2(K0 Ha)-$ (1 + H$)-l exp ( - 2E0AH/y), 

(4.6) 

(4.7) and 

where AH = H, - Ha. The exponential behaviour can only be predicted by con- 
sidering the limits of results obtained on the basis of the full equations of motion. 

For intermediate values of (Zo /y ) ,  we refer to (2.11) and assume that E2 is 
adequately given by the first term in the expansion. Then expressions for Y2 and 
9,) accurate to the same degree in E,, are given by 

and 

where 

- 2E0 sinh E2 Ha 
(1 + H i )  Hd gi sinh E,  H, 

- 4 sinh E2Hd 

Y, = - 

P -  
- ~ z ~ ( ~ o H a ) ~ ( l  +Hi)s inh~,H, ’  (4.9) 

8 = (sinh K 2  Hb)-2 (Hb + &E$ sinh 2R2 Hb) 

+ h7g2 (sinh K 2  H,)-2 (Xi H, + +R2 sinh 2E, H,). (4.10) 

These expressions lead to the shallow water results for (go/?) 4 1 and to (4.6) 
and (4.7) for (Ko/y)  9 1 but Eo < 1. 

5. Discussion of the standing edge wave contribution 
We shall now discuss briefly the behaviour of x, given by (A12), in order 

to assess its order of magnitude. For the case (Eo /y )  > 1, little needs to be said 
because, for the homogeneous case, it is known that the effect upon the trans- 
mission coefficients is of O ( g $ ) .  Thus, the results (4.6-4.7) still hold, except that 
the error term is of O(Ei) .  On the other hand, the case (Ko/y)  < 1 is not settled 
directly because the distribution of eigenvalues is quite different from the 
homogeneous case (cf. 0 2). 

We first consider the case when K O  approaches zero but, using the terminology 
of 0 2, (n/m) is not an integer. We note that 
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The resulting singularity in (A;)2 (cf. A 8) will cause x to be at least of O(Ei/y2). 
We therefore conclude that the major contribution to x as Eo -+ 0 must come 
from those eigenvalues for which (n/m) is an integer say, n', so that 

sin k,h, = sin - N O(K, /y ) ,  
(1 :m) 

which results in the cancellation of the singularity in Using the results 
given by (2.21) and (2.22), it is found, after some algebra, that as E0 approaches 
zero we can write p?K,x = -2E$Hi%H;'z Fm,, (5.3) 

n' 

where (5.4) 

Therefore the correction to the shallow water results is of O(Kk) if the series in 
(5.3) is convergent. But we can say that, if terms of O(y2)  are neglected, 

where 

-ax c 
n' 

1 
C =  

(6.5) 

(5 .6)  

The series is therefore convergent. 

I am indebted to J. W. Miles and W. H. Munk for suggesting the problem. The 
work was partly completed while the author was at  the Institute of Geophysics 
and Planetary Physics, La Jolla, where his research was sponsored by the 
National Science Foundation (GP 2414) and the Office of Naval Research 
(Nonr-22 16 (29)). 

Appendix 
The following quantities are used in the text. 

K O  sinh Kj(h, - y) - K j  cosh Kj(h, - y) 
<Dju(y) = Aj(Kj sinh Kjha - KO cosh Kjh,) ' 

<D3(y) = &'Cosh K,(y-Ah) (Ah = h,-h,). 
kg cos k,(h,- y) - K,sin k,(h, - g)  

#qa(Y) = (A;) (k ,  sin kqh, +KO cos hgh,) . 

- - Pb (hb + sinh 2Kj ' b ]  

2 sinh2Kjhb 2Kj 

(K~-K~)h,-Ko+Kocosh2KjJL,- i K ~ l ( K i +  K;)sinh2Kjh, 
2 ( Kj sinh K j  h, - KO cosh K j  h,)2 
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k, cos kq(h, - y) - KO sin k 
k, sin k, h, + KO GOS k, h, 

COS2 k,(hb 4- 9) I2 = Pb 1 
-ha k, hb 

sin 2kq h, 
- - 2 sin2 Pb kqhb ( h b  -k 

Ko+Kocosh2k ,h ,+~k;1 (k~-K~)s in2k ,h ,  
(kq sin k, h, + KO cos k, h,)2 

ha 

Ah 
(A 9) 

(A 10) 

1 
sinh 2K3h,] = p u s  cosh2 K3(y - Ah) dy. 

1 
(A,+)2 = p,Sh' cos2 Z,(y - Ah) dy = +p, (hd + 21 sin 2Zqhd). 

Ah Q 

(K3sinhK3hd-Kisinh Kjhd-  KocoshK3hd I 
N ,  (j= 1,2) = (AjA3)-' ___ 

( K C K ; )  1 K j  sinh K j  h, - KO cosh Kj ha 

(A111 
?C~(A,A,)-~ K3sinh K3hd+kqsinkqhd- Kocosh K3hd+ 

x=-x q (k,+ 2 K22 3) { k, sin k, h, + KO cos k, ha 
(A 12) 
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